Membership Representation for Detecting Block-diagonal Structure in Low-rank or Sparse Subspace Clustering
Minsik Lee, Jieun Lee, Hyeogjin Lee, and Nojun Kwak

1. Overview of subspace clustering

Subspace clustering divides data into groups, each of which forms a linear subspace. There are many examples that are adequate for subspace clustering, such as motion, face, and texture.

2. Proposal: Membership representation / normalized membership representation

Properties of membership matrix
1. Each element is either zero or one.
2. It can be transformed into a block-diagonal matrix, by permuting the same indices of rows and columns.
3. It is positive semidefinite (PSD).
4. It has integral eigenvalues.
5. For an ideal \(W \), that has the same block-diagonal structure with \(W \) satisfy:

Properties of normalized membership matrix
1. It is doubly stochastic, i.e., \(F F^T = I \).
2. It can be transformed into a block diagonal matrix, by permuting the same indices of rows and columns.
3. These optimization problems are complex. Auxiliary variables (e.g., \(M = M_1 = M_2 \))
4. Sets of membership / normalized membership matrices are discrete.

3. Procedure

1. \(W \) is not ideal. Minimize the errors.
2. Solutions become trivial. Regularization terms.

4. Results

Compared methods: Normalized cut (Shi and Malik, TPAMI 2000)

5. Conclusion

• We propose the membership representation (MR), which detects the block-diagonal structure in the output of subspace clustering.
• MR is a self-expressive system based on a Hadamard product.
• The final output is a normalized membership matrix, which is a doubly stochastic normalization of \(M \). It has eigenvalues in between zero and one.
• A simple eigenvalue-counting method showed competitive results in the experiments.

Any questions, comments, or suggestions are welcome! (Email: mileepaper@hanyang.ac.kr)