
2. Proposal: Membership representation / normalized membership representation

Properties of
membership matrix

1. Each element is either zero or one.
Diagonal elements are all ones.

2. It can be transformed into a block
diagonal matrix, by permuting the
same indices of rows and columns.
Then, the blocks of the transform
matrix are filled with one.

3. It is positive semidefinite (PSD).

4. It has integral eigenvalues.

5. For an ideal W, M that has the same
block-diagonal structure with W satisfy:

Properties of
normalized membership matrix

1. It is doubly stochastic, i.e., F1=FT1=1.

2. It can be transformed into a block
diagonal matrix, by permuting the
same indices of rows and columns.
Each block is filled with the reciprocal
of its dimension.

3. It is an orthogonal projection, i.e.,
F2=F=FT.

4. The eigenvalues are either zero or one.

5. For an ideal M, F that has the same
block-diagonal structure with M satisfy:
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4. Results
Compared methods: Normalized cut [Shi and Malik, TPAMI 2000]

5. Conclusion
 We proposed the PMP, which is an extended version of PND for temporal dependence.
 Marginal distribution of a state of a PMP is a PND.
 Shape deformation is finite, so defining PMP to be stationary improves the performance
 Absolutely no prior information about the data is required for EM-PMP.
 Proposed method gives the state-of-the-art performance, about 25% better than EM-PND.

Any questions, comments, or suggestions are welcome! (Email: mleepaper@hanyang.ac.kr)

Subspace clustering divides data into groups,
each of which forms a linear subspace. There
are many examples that are adequate for
subspace clustering, such as motion, face, and
texture.

Low-Rank Representation (LRR) [Liu et al.,
TPAMI 2013] or Sparse Subspace Clustering
(SSC) [Elhamifar and Vidal, TPAMI 2013] both
solve this problem by a self expressive model
with low-rank or sparsity constraint, respect-
ively. The solution matrix is approximately
block-diagonal, which requires post-processing.

3. Procedure
1. W is not ideal.  Minimize the errors.

3. These optimization problems are complex.
 Auxiliary variables (e.g., M=M1=M2)
 Augmented Lagrangian method (ALM)
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5. Conclusion
 We propose the membership representation (MR), which detects the block-diagonal structure

in the output of subspace clustering.
 MR is a self-expressive system based on a Hadamard product.
 The final output is a normalized membership matrix, which is a doubly stochastic normal-

ization of M. It has eigenvalues in between zero and one.
 A simple eigenvalue-counting method showed competitive results in the experiments.
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2. Solutions become trivial.
 Regularization terms

4. Sets of membership / normalized member-
ship matrices are discrete.
 Relax them to convex conditions.
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