Membership Representation for Detecting Block-diagonal Structure in Low-rank or Sparse Subspace Clustering Minsik Lee, Jieun Lee, Hyeogjin Lee, and Nojun Kwak

1. Overview of subspace clustering

Subspace clustering divides data into groups, each of which forms a linear subspace. There are many examples that are adequate for subspace clustering, such as motion, face, and texture.

 $\left\|\mathbf{W}\right\|_{o_{W}}+\lambda_{E}\left\|\mathbf{E}\right\|_{o_{E}},$ $\min_{\mathbf{W},\mathbf{E}}$ s.t. $\mathbf{X} = \mathbf{X}\mathbf{W} + \mathbf{E}$,

W: Solution matrix E: Error matrix

Low-Rank Representation (LRR) [Liu et al., TPAMI 2013] or Sparse Subspace Clustering (SSC) [Elhamifar and Vidal, TPAMI 2013] both solve this problem by a self expressive model with low-rank or sparsity constraint, respectively. The solution matrix is approximately block-diagonal, which requires post-processing.

2. Proposal: Membership representation / normalized membership representation

Properties of membership matrix

- 1. Each element is either zero or one Diagonal elements are all ones.
- 2. It can be transformed into a block diagonal matrix, by permuting the same indices of rows and columns. Then, the blocks of the transform matrix are filled with one.
- 3. It is positive semidefinite (PSD).
- 4. It has integral eigenvalues.
- 5. For an ideal W, M that has the same block-diagonal structure with W satisfy:

Transform into approx. membership

Result of

LRR or SSC

3. Procedure

- 3. These optimization problems are complex.
- \rightarrow Auxiliary variables (e.g., $M=M_1=M_2$)
- \rightarrow Augmented Lagrangian method (ALM)

4. Sets of membership / normalized membership matrices are discrete. \rightarrow Relax them to convex conditions.

Properties of normalized membership matrix

1. It is doubly stochastic, i.e., F1=F^T1=1.

2. It can be transformed into a block diagonal matrix, by permuting the same indices of rows and columns. Each block is filled with the reciprocal of its dimension.

3. It is an orthogonal projection, i.e., $\mathbf{F}^2 = \mathbf{F} = \mathbf{F}^T$.

- 4. The eigenvalues are either zero or one.
- 5. For an ideal M, F that has the same block-diagonal structure with M satisfy:

 $\mathbf{F} = \mathbf{F} \odot \mathbf{M}$

4. Results

5. Conclusion

- We propose the membership representation (MR), which detects the block-diagonal structure in the output of subspace clustering.
- MR is a self-expressive system based on a Hadamard product.
- The final output is a normalized membership matrix, which is a doubly stochastic normalization of **M**. It has eigenvalues in between zero and one.
- A simple eigenvalue-counting method showed competitive results in the experiments.

Compared methods: Normalized cut [Shi and Malik, TPAMI 2000]

R)				Hopkins 155		
			K	$v_{ m ACC}$	$v_{ m NMI}$	p_K (%)
	LRR	NC	exact	0.965 (0.077)	0.883 (0.187)	1
*** 			est.	0.928 (0.107)	0.828 (0.236)	0.744
		MR	exact	0.966 (0.075)	0.891 (0.156)	0.949
			est.	0.941 (0.103)	0.869 (0.163)	0.814
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	SSC	NC	exact	0.974 (0.073)	0.909 (0.192)	1
			est.	0.926 (0.120)	0.808 (0.320)	0.724
		MR	exact	0.970 (0.076)	0.915 (0.158)	0.974
			est.	0.939 (0.113)	0.893 (0.153)	0.801
\frown				-		

Yale-Caltech											
		LRR		SSC							
	NC MR			NC	MR						
	exact	exact	est.	exact	exact	est.					
$v_{ m ACC}$	1	1	1	0.936	0.982	0.950					
$v_{ m NMI}$	1	1	1	0.961	0.980	0.951					
K	38	38	38	38	38	40					