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1 DERIVING THE THIRD CONDITION OF (2)

The third condition of (2) is the optimality condition
for Ri when the other variables are fixed. Note that
we can eliminate Ri in the last constraint of (1), i.e.,

the constraint is identical to
∥

∥

∥siXi

(

I− 1

np
11T

)∥

∥

∥ = 1,

hence this constraint has nothing to do with Ri. Note
that ti = − 1

np
siRiXi1 because of the second condition

in (2), and let us denote X′

i , Xi

(
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11T

)

, then
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2
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This problem is the orthogonal Procrustes problem [1],
where the optimal Ri that minimizes (29) is given as

Ri = ViU
T
i from the SVD of X′

iX
T

= UiΛiV
T
i . From

the polar decomposition of X′

iX
T
= (UiV

T
i )(ViΛiV
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i ),

one can conclude that Ri is optimal iff it satisfies

(
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T
)

X
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= siRiX

′
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2 PROOF OF PROPOSITION 1

First, we show that (1⊗ I) is orthogonal to the other
terms. Note that

(1⊗ I)T vec
(

Y
)

= Y1 = 0,

because the centroid of Y is at the origin. Similarly,
because

[

y
]

×
is a linear function of y,

(1⊗ I)T K
(

Y
)

=
∑

[

yi

]

×
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Finally, we show the relationship between vec
(

Y
)

and
K
(

Y
)

. Note that

K
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Y
)T

vec
(

Y
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=
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×
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∑

[

yi

]

×
yi. (30)

Hence, this expression is equivalent to the sum of the
exterior products of yi with themselves. Because the
exterior product of a vector with itself is 0, i.e., y∧y = 0

and y × y = 0 for nd = 3, (30) is also 0. �

3 PROOF OF PROPOSITION 2

First of all, a linear transform of a normal distribution is
also Gaussian, hence Y′ is Gaussian. Moreover, the de-
terminant |ΣR| remains the same because the transform

is orthogonal. Then, it is obvious that Y
′

= E[Y′] =
RE[Y] = RY and

E
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(
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)

.

The only thing left to prove is whether the constraints
on Y′ hold after the transformation. To show this, we
substitute Y = RTY′ in (7), i.e.,
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Thus, the constraints for Y′ holds after the transform.�

4 PROOF OF PROPOSITION 3

First of all, the constraint ΓTPN

(

Y
)

= 0 does not
depend on the scale of Y, because PN

(

Y
)

is a linear

function of Y. However, R̂i depends on the scale of Y,
i.e., the first condition in (20) makes the scale of R̂is lin-
early decrease as the scale of Y increases. Nevertheless,
this does not affect J2: The last term of (19) does not
change due to the condition ΓTC′Γ = I, even though
the scale of C′ decreases quadratically as the scale of
R̂is decrease. However, this makes Γ increase linearly.
Let us define R̂′

i ,
1

a
R̂i and Γ′

, aΓ, where a denote a
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scale. Then, J2 becomes
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5 DERIVATION OF THE GRADIENT OF J2

Here, we show how to calculate each term in (23).
∂J2/∂Γ can be easily found by differentiating the cost
function as

∂J2
∂Γ

= ΓTC′ − Γ+.

However, finding ∂Γ/∂Y is a bit tricky. By differentiat-
ing ΓTPN

(

Y
)

= 0, we have

∂ΓTPN + ΓT ∂PN = 0. (31)

Hence, ∂Γ/∂yjk (yjk is the (j, k)th element of Y) must
be

∂Γ

∂yjk
= −P+T

N ET
jkΓ+ ΓGjk,

where Ejk = ∂PN/∂yjk and Gjk is an appropriate
matrix. The last term was added because the components
of ∂Γ that are orthogonal to PN are cancelled in (31),
i.e., PT

NΓGjk = 0. Since PN can be seen as a rearranged
version of Y, Ejk is a sparse constant matrix that is filled
with {1, 0,−1}, and can be expressed as

Ejk = (ek ⊗ I)
[

Ej 0
]

,

where ek is the kth np-dimensional elementary (unit)
vector, i.e., its element is one for the kth element and
zero for the others. Here, 0 is an nd×nd zero matrix, and
Ej is an nd × (nN −nd) (=3× 4) matrix that is described
as

E1 =





1 0 0 0
0 0 0 −1
0 0 1 0



 , E2 =





0 0 0 1
1 0 0 0
0 −1 0 0



 ,

E3 =





0 0 −1 0
0 1 0 0
1 0 0 0



 .

Note that the last three columns of Ek, and so those
of Ejk or ∂PN , are all zeros because the corresponding
elements of PN are constants.

In practice, Gjk does not need to be evaluated, because
〈
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,
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= tr
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)
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,

and Gjk is eliminated in the above equation. Note that
P+

NC′Σ+ does not depends on j or k, and multiplying
Ejk only changes the order and the signs of rows. There-
fore, we can analytically find this part of the gradient by
a few matrix multiplications.

The derivatives related to R̂′

i can be similarly cal-

culated. To calculate ∂J2/∂R̂
′
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i,j,k and Ξj,k are the (j, k)th 3 × 3 block of C′

i
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However, R̂i has a special structure satisfying the rela-
tion R̂T

i R̂i = 2ciI. Differentiating this constraint yields,

∂R̂T
i R̂i + R̂T

i ∂R̂i = 2∂ciI.

Thus, similar to (10), ∂R̂i can be expressed in terms of

a four-dimensional vector r̂i =
[

ci rix riy riz
]T

as
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∣

∣

∣
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This can be alternatively described in a vectorized form

as vec
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∣

∣
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matrix L;
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(
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)
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[

vec(Θ) K(Θ)
]
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where P′

N (Θ) is the first four columns of PN (Θ), for
any matrix Θ consisting of three rows. Finally, we have
the following derivative:
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∣
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∣

∣
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T
)T
∣

∣

∣

∣

∣

∣
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L

=
1
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T
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for a 3× 3 matrix Ωi , −nR

3
I+

∑

j,k Ξk,jC
′

i,j,k.

Now, let us assume that MiY
T

is full-rank so that

R̂iMiY
T

is positive definite. Then, the PSD condition
in (20) is equivalent to a symmetry condition, i.e.,

R̂iMiY
T
= YMT

i R̂
T
i ,

for a neighborhood of current R̂i. Then, the first two
conditions in (20) can be expressed similarly as in (8),
i.e.,

P′T
N vec

(

R̂iMi

)

=
[

1 0 0 0
]T

,
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TABLE 1

Average reconstruction errors w/o noise

data EM-PPCA MP
EM-GPA

SPM CSF2
EM-PND

v1 v2 [2] init. prop.

FRGC .1469 .1395 .0828 .0842 .1094 .1926 .0727 .1035 .0731

walking .1485 .2699 .1015 .0593 .0861 .0708 .0465 .0982 .0407

shark .0688 .0874 .0590 .0455 .1670 .0551 .0135 .0809 .0272

face .0209 .0331 .0203 .0218 .0233 .0209 .0165 .0190 .0150

yoga .6100 .5924 .1095 .0377 .0224 .0225 .0140 .1201 .0128

stretch .5392 .5915 .6717 .0383 .0288 .0219 .0156 .1085 .0150

pickup .5149 .3465 .5331 .0356 .0356 .0607 .0372 .1447 .0133

drink .1292 .2650 .1179 .0197 .0216 .0123 .0037 .0424 .0031

dance .2325 .4062 .2671 .1381 .1472 .1350 .1834 .1793 .1247

TABLE 2

Average reconstruction errors w/ noise

data EM-PPCA MP
EM-GPA

SPM CSF2
EM-PND

v1 v2 [2] init. prop.

FRGC .1980 .1400 .1139 .1130 .1767 .2061 .0889 .1278 .0891

walking .1368 .3231 .1205 .0988 .1050 .0966 .0770 .1238 .0769

shark .0486 .1192 .0929 .0862 .1697 .1043 .0600 .1046 .0586

face .0464 .0524 .0866 .1105 .1321 .0543 .0403 .0764 .0421

yoga .5287 .6117 .1240 .0747 .0822 .0529 .0409 .1283 .0409

stretch .5479 .5738 .6503 .0750 .0652 .0543 .0444 .1217 .0444

pickup .5037 .3674 .5517 .0740 .0581 .0705 .0409 .1513 .0405

drink .1768 .2678 .1341 .0571 .0407 .0365 .0339 .0704 .0339

dance .2229 .4131 .2778 .1688 .1510 .1544 .1806 .1929 .1356

TABLE 3

Average camera motion errors (degree)

data EM-PPCA MP
EM-GPA

SPM CSF2
EM-PND

v1 v2 [2] init. prop.

yoga 39.552 41.608 7.571 2.200 0.816 0.811 0.590 3.921 0.498

stretch 43.527 43.454 46.444 2.539 1.125 0.717 0.673 4.745 0.593

pickup 30.095 21.991 29.407 1.823 1.483 2.263 1.691 5.040 0.449

drink 7.097 15.957 6.773 1.264 1.132 0.449 0.145 1.818 0.126

or
P′T

N

(

MT
i ⊗ I

)

vec
(

R̂i

)

=
[

1 0 0 0
]T

,

in terms of vec
(

R̂i

)

. By differentiating this equation and

using the relations R̂i = I and vec
(

∂R̂i

)∣

∣

∣

R̂i=I

= L∂r̂i,

we obtain

∂P′

N

(

Y
)T

mi +P′

N

(

Y
)T

P′

N (Mi)∂r̂i = 0.

If we denote Ψi , P′

N

(

Y
)T

P′

N (Mi), we have

∂r̂i
∂yjk

∣

∣

∣

∣

R̂i=I

= −Ψ−1

i ĔT
jkmi,

where Ĕjk = (ek ⊗ I)Ej is the first four columns of Ejk,
which are non-zero.

Hence, we can calculate
〈

∂J2
∂r̂i

,
∂r̂i
∂yjk

〉

= −
1

ns

vec(Ωi)
T
LΨ−1

i ĔT
jkmi. (32)

Note that (32) is also found analytically. Finally, substi-
tuting all the derivatives to (23) yields (24).

6 PROOF OF PROPOSITION 4

The condition (∂J2/∂Y)1 = 0 can be written for each
element as

0 = −
∑

k

∂J2
∂yjk

=

∑

k

(

tr
(

EjkP
+

NC′Σ+
)

+
1

ns

∑

i

vec(Ωi)
T
LΨ−1

i ĔT
jkmi

)

.

Since
∑

k

Ejk =
∑

k

(ek ⊗ I)Ej = (1⊗ I)Ej ,
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(a) Walking (b) Face (c) Yoga (d) Pickup (e) Drink (f) Dance

(g) Walking (h) Face (i) Yoga (j) Pickup (k) Drink (l) Dance

(m) Walking (n) Face (o) Yoga (p) Pickup (q) Drink (r) Dance

Fig. 1. Reconstructed results of benchmark datasets (top row: EM-PND, middle row: CSF2, bottom row: SPM, ◦:
ground truth, +: reconstructed points).

∑

k tr
(

EjkP
+

NC′Σ+
)

is zero, i.e.,

tr

((

∑

k

Ejk

)

P+

NC′Σ+

)

= tr
(

(1⊗ I)EjP
+

NC′Σ+
)

= tr
(

EjP
+

NC′Σ+(1⊗ I)
)

= 0.

Likewise,
∑

k

Ĕjk = (1⊗ I)Ĕj

where Ĕj is the first four columns of Ej , and
∑

k

vec(Ωi)
T
LΨ−1

i ĔT
jkmi

=
∑

k

vec(Ωi)
T
LΨ−1

i ĔT
j (1

T ⊗ I)mi = 0.

This concludes the proof. �

7 COST FUNCTION FOR INITIAL ROTATIONS

Here, we explain the cost function for calculating the
initial rotations in Section 3.5 of the main document.
The shape-basis-based NRSfM approaches [3] usually
assume that the 2D shape matrix W ∈ R

2ns×np can be
decomposed into W = R(C⊗I)S, where R ∈ R

2ns×3ns is
a block diagonal matrix whose 2× 3 diagonal blocks are
Stiefel matrices, C ∈ R

ns×K is the coefficient matrix, and
S ∈ R

3K×np is the shape-basis matrix. Recent approaches
suggest to decompose W = ΠS′ based on SVD, and find
a matrix G ∈ R

3K×3 that makes the 2× 3 submatrices of
ΠG Stiefel matrices multiplied by some scalars.
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#50 #100 #150

SPM

CSF2

PND

Fig. 2. Reconstruction of the cube sequence. (Blue
crosses are the reconstructed points seen from a view-

point different from the camera view.)

#53 #58 #63

SPM

CSF2

PND

Fig. 3. Reconstruction of the dinosaur sequence.

In [4], the shape deformation was assumed to have
a dominant DC term, hence, they found G that makes
the submatrices of ΠG Stiefel matrices (without any
scalar factors). The solution was found by minimizing
the errors, i.e.,

∑

‖ΠiGGTΠT
i − I‖2,

where Πi is the ith pair of rows in Π. If we do not have
the DC term assumption, we can instead minimize

∑

‖ΠiGGTΠT
i − aiI‖

2,

where ai is a scalar variable. We can easily verify that

(a) Ground Truth

(b) EM-PND (Average reconstruction error: 0.0609)

(c) CSF2 (Average reconstruction error: 0.0997)

Fig. 4. Reconstruction of the pace sequence.

minimizing this cost function is identical to minimizing

∑

∥

∥

∥

∥

[

1 0 0 −1
0 1 1 0

]

vec
(

ΠiGGTΠT
i

)

∥

∥

∥

∥

2

,

which was used for initializing the rotations of the
proposed method. Note that this corresponds to the
approach in [5].

8 DETAILED RESULTS OF EXPERIMENTS

Tables 1 – 3 show the error including the early NRSfM
schemes, EM-PPCA and MP. Here, we can see that EM-
PPCA gives smallest error for the shark sequence with
noise, which seems to be attributed due to the nature
of the shark sequence that was artificially generated by
superposing two basis shapes [6]. Because of this, EM-
PPCA, which explicitly limits the number of shape bases
in the reconstruction process, gives better performance
for the shark data. However, this is hardly the case
for the real-world applications. In the other cases, EM-
PPCA and MP usually show very poor performance.
The accuracy of the initial shape is not as good as the
recent state of the art, but is better than those of the
early NRSfM schemes, i.e., EM-PPCA and MP, so this
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(a) EM-PND (Average error:
0.1349)

(b) CSF2 (K = 4, Average
error: 0.1668)

(c) SPM (K = 5, Average

error: 0.1621)

Fig. 5. Reconstruction examples of the synthetic spring

toy sequence. (◦: ground truth, +: reconstructed points)

can be effectively used for many NRSfM schemes for
initialization. Some of the reconstruction examples for
the benchmark sequences are shown in Figure 1. Here,
EM-PND shows a better fit between the reconstructed
points and the corresponding ground truth than CSF2
and SPM.

SPM, CSF2, and EM-PND have been tested for the real
data sequences used in [4], which were the cube and
the dinosaur sequences. Since there are no ground truth
for these data sequences, Figures 2 and 3 are shown for
qualitative evaluation. For the cube sequence, SPM gave
flat reconstruction implying that the reconstruction was
not successful. For the dinosaur sequence, the results of
CSF2 show wrong directions. On the other hand, the
reconstruction of EM-PND shows good result for each
frame of the sequences.

Figure 4 shows some examples of the reconstructed
frames of the pace sequence. Here, we can see that
EM-PND gives better reconstruction results than CSF2.
Although there are some minor differences between the
reconstruction and the ground truth, the results are good
enough for dense 3D recovery.

We have also tested a synthetic data whose deforma-
tion lies in a nonlinear manifold. Similar to the spring
toy data in [7], we have generated a synthetic data of
a spring toy, of which the deformation is nonlinear.
The parameters of SPM and CSF2 have been tuned to
yield the best performance. Figure 5 shows the average
errors and the reconstructed examples. Here, we can see
that EM-PND gives the best performance, even though
it does not require any tuning parameter. Although a
Gaussian distribution can only be defined on a linear
manifold, the adaptive nature of EM-PND seems to be
the cause of such better performance, according to the
interpretation of Section 3.4 of the main document.
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